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Modulus-maps for amorphous polymers 
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This paper explores the possibility of constructing modulus-mechanism maps for amorphous 
polymers. Four regimes are identified: the glassy regime, the visco-elastic regime, the rubbery 
regime and the regime of viscous flow (melting), truncated by decomposition. Constitutive 
laws for each regime are assembled and adapted to give a good description of a large body of 
experimental data for amorphous polymethylmethacrylate and polystyrene. The adjusted laws 
are then used to construct diagrams which relate the time and temperature-dependent 
modulus, E(t, T), to the temperature and the loading time (or frequency). The diagrams are 
divided into fields corresponding to the four regimes. A diagram summarizes the small-strain 
mechanical behaviour of the polymer over a wide range of conditions. 

Nomenclature AQ/Qm 
T Temperature (K). 
a Tensile or compressive stress (MPa). AE/Eo 

Tensile or compressive strain, aT 
Tensile or compressive strain rate 
(sec-1 ). tt 

t Time (sec). t/0 
v Frequency (sec- 1 ). 
E Time and temperature dependent ~g, ~v 

Young's modulus (GPa). 
E0 Modulus of 0 K (GPa). C1, C2 
a m Temperature coefficient of modulus. Q 
Tg Glass temperature (K). fv 
T D Depolymerization temperature (K). V(e) 
Mw, Mcr, )11~ Molecular weights (kgmol-1). R 
Qm Mean activation energy v 0 

(kJ tool- 1 ). 

Fractional standard deviation of acti- 
vation energy. 
Fractional modulus drop at a transition. 
Shift factor for time-temperature equi- 
valence. 
Viscosity (Nsec m-Z). 
Pre-exponential for viscosity (Nsec 
m - 2 ) .  

Bulk thermal expansion coefficient 
below and above T~ (K-l). 
WLF constants ( - ,  K). 
Density (kgm 3). 
Fractional free volume. 
Internal energy per unit volume (J m-3 ). 
Gas constant (8.314Jmo1-1 K l). 

A pre-exponential frequency factor 
(see- ' ) .  

1. I n t r o d u c t i o n  
When a polymer is loaded, it suffers deformation 
which, in general, increases with time of loading. For 
uniaxial loading, the resistance to small-strain 
deformation is conventionally measured by the time 
and temperature dependent modulus, E(t, T) (from 
now on simply called E). If, for instance, a constant 
stress a is applied to a sample of the polymer, giving 
a strain e(t, T) after a time t at temperature T, then 

ff 
E = (1) 

e(t, T) 

Linear amorphous polymers like polymethyl- 
methacrylate (PMMA) or polystryene (PS) show four 
distinct regimes of deformation, in each of which the 
modulus has certain characteristics, illustrated in 
Fig. 1. 

(a) The glassy regime, with a modulus of between 
1 and 10 GPa, associated with stretching and bending 
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of intermolecular bonds, and showing only a slight 
time-dependence associated with a number of second- 
ary relaxations. 

(b) The glass-transition regime, in which the 
modulus drops steeply from around 1 GPa to near 
1 MPa with increasing temperature or time of loading. 

(c) The rubbery regime, with a modulus around 
1 MPa, associated with the rubber-like sliding of the 
long-chain network of molecules, constrained by 
entanglements which behave (physically) like cross- 
links. 

(d) The viscous regime, at temperatures well above 
the glass transition temperature, in which the polymer 
can be thought of as a viscous liquid; its molecules 
move relative to each in a snake-like manner (repta- 
tion) which, when biased by stress, leads to viscous 
f low. 

(e) A regime of decomposition in which chemical 
breakdown begins and the mechanical properties 
change in an uncontrolled way. 
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Figure 1 Schematic illustration showing the regimes of behaviour 
typical of an amorphous polymer. 

Each regime has been studied and modelled in more 
or less detail, and constitutive relations for each have 
been formulated (they are reviewed below). Exper- 
imental data for E are available for PMMA and PS. 

Our aim, simply put, is to construct a quantitatively 
accurate version of Fig. 1. To do so, we fit the con- 
stitutive relations to the data (requiring some modifi- 
cation to the models) and examine how they can be 
combined to give a self-consistent description of  
small-strain deformation from OK to above the 
melting temperature, and for all practical loading 
times. The results are assembled into diagrams (one 
form of which resembles Fig. 1) which summarize the 
small-strain deformation behaviour of each polymer 
as a function of  temperature, time and frequency. 

We now examine the four regimes in more detail, 
reviewing and selecting among the constitutive laws 
for each. Symbols and their definitions are listed in the 
nomenclature. 

2. De format ion  mechanisms 
2.1. The Glassy regime and the fl, 7 

and 6 relaxations 
The glass temperature, Tg, roughly divides the low 
temperature behaviour from the high. Well below Tg, 
linear amorphous polymers have Young's moduli of, 
very roughly, 3 GPa. In this regime, bond stretching 
and bending controls the modulus which directly 
reflects the stiffness of the Van der Waals bonds which 
bind one chain to another. They are shown as dotted 
lines in Fig. 2. The covalent C -C  bonds which form the 
chain backbone (full lines) are about  100 times stiffer 
than the Van der Waals bonds, and their stretching 
and bending contributes nothing significant to the 
elastic deformation. Rotation about a C C bond is 
possible. The single C - C  bond rotates easily; steric 
hindrance, and thus the Van der Waals bonds, again, 
limit its extent [1 4]. 

If  the internal energy of  the polymer, per unit 
volume, is V(e), then the glassy modulus at 0 K is 
calculated (in principle) by forming the second deriva- 
tive of  V(s) with respect to E 

d 2 V(e) 
E - de 2 (2) 

But the fundamental understanding of  inter- 
molecular bonding in polymers is still too poor  to 

Figure 2 Schematic illustration of a linear amorphous polymer. The 
covalently-linked chains (full lines) are bonded to each other by 
weak Van der Waals forces (dotted lines) which determine the glassy 
modulus. 

allow V(e) to be compu.ted accurately from first prin- 
ciples (in practice, experimental data for E are used to 
calibrate the potential functions, rather than the other 
way round). Instead, the modulus at absolute zero, E0, 
is obtained by extrapolating experimental measure- 
ments of  E at slightly higher temperatures to absolute 
zero. Values of E0 obtained in this way are listed, 
together with other material data, in Table I. 

Increasing the temperature has two distinct effects. 
First, thermal expansion increases the molecular 
separation and lowers the Van der Waals restoring 
forces: this gives a slow drop in modulus, but does not 
introduce a time or frequency-dependence. Second, 
the thermal energy of  the molecules permits thermally- 
activated local rearrangements (usually, rotations 
about a C - C  bond), giving time-dependent strain and 
an additional drop in modulus. 

The first effect leads to a roughly linear decrease in 
modulus with increasing temperature. Yannas and 
Luise [3] developed this idea: thermal expansion 
increases the interchain distance, reducing the force 
required for intermolecular deformation by bond 
stretching. The final form of their equation is cumber- 
some but simplifies to a linear relationship at low 
temperatures which can be' written: 

E = E0 1 -- ~m (3) 

We use this to describe the drop in modulus caused 
by thermal expansion. The dimensionless coefficients 
,~ which best described the low temperature data for 
each polymer are listed in Table I. 

The second contribution comes from the small 
thermally-activated rearrangements of side groups or 
of short segments of  chain at "loose sites" in the amor- 
phous structure (Fig. 3). These relaxation processes, 
all occurring at temperatures below Tg (and known, in 
order of  decreasing temperature, as the fl, 7 and 5 
relaxations) give additional strain, and they thereby 
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T A B L E  I Material data used to construct the diagrams 

Material P M M A  PS 

Thermal and structural data 
Glass temperature, Tg (K) 
Bulk coefficient of T-expansion below Tg, ~ (K -1) 
Bulk coefficient of  T-expansion above Tg, c~ (K -~) 
Mean molecular weight, h4 w (kg tool -1 ) 

Modulus data 
Young's modulus at 0 K, E 0 (GPa) 
T-coefficient of modulus, ~r. 

Data for ~, y and 6 relaxation 
Mean activation energy, Qm (kJ mol-  i ) 
Fractional spread of  activation energy, AQ/Qm 
Modulus drop, AE/E o 
Position of peak, T*/Tg 
Pre-exponential, r/0 (Nsec m 2) 

Data for glass transition 
Constant C~ of  WLF equation 
Constant C2 of  WLF equation for T < Tg (K) 
Constant C 2 of  WLF equation for T > Tg(K) 
Fractional spread of  C 1 ((9 = AC~/C I) 

Data for rubbery plateau 
Molecular weight between entanglements, h4 e (kg mol l) 
Density at T = Tg, ~(Tg)(kgmo1-3) 

Data for viscous flow 
Critical molecular weight, M= (kg mol 1 ) 
Pre-exponential, q0 (Nsec m 2) 
Fractional spread of  C l ((o = AC I/C 1) 

Data for decomposition 
Depolymerization temperature, Td/Tg 

378 373 
2.69 x 10 4 2.27 x 10 4 
6.25 x 10 -4 6.12 x 10 -4 

102 102 

8.6 6.2 
0.28 0.3 

13 121.3 9.4 125 
0.20 0.20 0.4 0.4 
0.07 0.47 0.29 0.03 
0.26 0.75 0.10 0.80 

15.8 1.5 x 10 -15 3.5 x 10 -6 8.3 x 10 -17 

17.4 17.4 
143 143 
52 52 
0.05 0.08 

9.15 14.0 
1.16 x 103 1.03 x 103 

30 35 
1.1 x 1016 2 x 1015 
0.11 0.05 

1.44 1.46 

reduce the modulus a little. Each relaxation is 
positioned (for a given loading time or frequency) at 
a characteristic temperature at which thermal energy 
becomes sufficient to activate the rearrangement. 

Like similar relaxations in crystalline solids, the 
response of the material to load is conveniently 
described by a rheological model. The simplest that is 
of any real use is the standard linear solid (Fig. 4a), 
composed of two springs of modulus E and AE, and 
a dashpot of viscosity: 

q = q0exp(~T  ) (4) 

where Q is the activation energy for the process, R the 
gas constant and q0 a constant which is chosen to fix 
the position of the drop in modulus. The standard- 
linear model gives a good phenomenological descrip- 
tion of most anelastic relaxations in crystals, and 
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Figure 3 Schematic illustration of  the secondary relaxations in 
P M M A  and PS. 

relaxations in glasses do, very roughly, have the same 
characteristics. But more careful examination of data 
for amorphous polymers shows that the standard 
linear solid is too simple. Its response leads to an 
almost step-like drop in modulus at the characteristic 
temperature; the real relaxation is broader (Fig. 5). 
This is no surprise. In PMMA, for instance, the 3- 
relaxation is thought to be caused by a motion of the 
ester side-group, the ?,-relaxation by the motion of one 
of the two methyl groups and the 6-relaxation by the 
motion of the other one (Fig. 3). The amorphous 
chain-packing grips of some of these more tightly than 
others, so that each relaxation has a spectrum of acti- 
vation energies. The response is then more realistically 
described by the parallel coupling of "springs and 
dashpot" units shown in Fig. 4b, each dashpot 
describing a part of the activation energy spectrum. 

This arrangement of units, rather than a more 

E" 

(a)  (b )  

Figure 4 (a) The standard linear solid, (b) the extended model. If  a 
Gaussian distribution of  relaxation times is assumed, the model 
requires only one more parameter than the standard-linear solid to 
describe it completely. 
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Figure 5 The response of the standard-linear solid with a single 
activation energy compared with experiment. 

general one involving units in series and parallel, is 
justified in the following way. Relaxation involves the 
motion of isolated side groups - those which, at a 
given instant, are less tightly gripped than the rest. 
Each can be thought of as a small spherical volume in 
which viscous deformation takes place, embedded in 
an elastic matrix. The constitutive equation for a 
material consisting of viscous inclusions in an elastic 
matrix is discussed by Brown [5]: provided the disper- 
sion of viscous spheres is dilute (meaning that they are 
well separated), the material behaves like a standard 
linear solid (as in Fig. 4a). If  each of the spherical 
volumes has a different activation energy (as in the 
case for the side-group relaxations discussed here) the 
same reasoning leads to the conclusions that the 
material behaves in a way described by Maxwell 
elements in parallel, as in Fig. 4b. 

As explained, the distribution of activation energies 
arises from differences in local packing density which 
make it harder to move some side-groups than others. 
We have used a Gaussian distribution of activation 
energies with a m e a n  Qm and a standard deviation AQ. 
The proportion of units (that is, the fraction of the 
spheres which relax) with activation energies between 
Q and 5Q i s f (Q) fQ where 

1 
f(Q) - (27z)l/2AQ[exp - I ( Q ~ Q m ) 2  1 (5) 

This defines a weighting function for each unit 
(Fig. 6) so that the modulus drop 6Ei associated with 

aE f{Q) 

= 

Q om 

Figure 6 A Gaussian distribution for the fraction of units with 
activation energies between Q and Q + 5Q requires an associated 
distribution of moduli 6E,, illustrated here. 

full relaxation of the ith unit is 

6E, = AEf(Q)6Q (6) 

where AE is the total modulus drop associated with 
the relaxation. This method introduces only one new 
variable, the standard deviation, AQ, into the calcu- 
lation of the relaxation; it is chosen so that the width 
of the relaxation (Fig. 5) matches experiment. Data 
for AE, Qm and AQ/Qm for PMMA and PS are listed 
in Table I. 

2.2. The glass-rubber transition 
(the visco-elastic regime) 

As the temperature is raised, the Van der Waals 
bonds start to melt. Then segments of the previously 
elastically-bonded chains slide relative to each other 
and the material behaves in a visco-elastic way. Within 
this regime it is found that the modulus E at one 
temperature can be related to that at another by a 
change in the time scale only, that is, there is an 
equivalence between time and temperature. This means 
that the curve describing the modulus at one tem- 
perature can be superimposed on that for another by 
a constant horizontal displacement log (av) along 
the log (t) or log (v) axis, as shown in Fig. 7. 

In crystalline solids (notably metals) the time 
temperature equivalence for the rate of diffusion, for 
creep, and for other thermally activated processes, is 
well known; it follows from the kinetic theory of 
simple thermally activated processes. The diffusive 
jump frequency at one temperature, 7"1 for example, is 
related to that at another temperature, T2, by 

2.3R ~, (7) 

where Q is the activation energy for diffusion. A 
simple shift along the frequency or time axis by 
log (aT) then brings the response at TI into coinci- 
dence with that at T2. 

A spectrum of activation energies (which is inevi- 
table in an amorphous system) does not destroy the 
time-temperature equivalence though it may change 
its form. If  the width of the spectrum, AQ, is small (so 
that AQ >> RT) then it is easily shown that the shift 
factor defined by Equation 7 still applies, and the 
relaxation follows simple Arrhenius kinetics. The fl, 

\ 
% % 

LOG (TIME) OR LOG(1/FREOUENCY) 

Figure 7 Schematic illustration of the time temperature equiv- 
alence for the modulus. 
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Figure 8 Schematic illustration of viscous diffusive motion, or 
reptation, of a polymer chain in the tube defined by its immediate 
surroundings. 

and 6 relaxations do, in fact, give linear Arrhenius 
plots; those for PMMA and PS are shown later. But 
the e, or glass-rubber transition is more complicated. 
Experiments on liquids and on amorphous polymers 
[6] are not well described by Equation 7; they suggest, 
instead, a shift factor (the " W L F "  shift factor) given 
by 

Ct(T- rg) 
log a x = (8) 

C2-+- T -  Tg 

where C~ and C2 are constants (the " W L F "  constants, 
with Tg as reference temperature). In the limit 
T >> C2 - Tg, this reduces to the simpler Equation 
(7) with Ci = Q/2.3RTg. But the values of C2 are such 
that this is never a satisfactory approximation and a 
new, broader physical interpretation must be sought. 

The quest had produced a number of models (for 
brief reviews, see [7-9]). From these the following 
simplified picture can be assembled. Viscous chain 
motion is caused by the stress-biased diffusion of 
polymer chains within the tubes which define their 
surroundings, as shown in Fig. 8. This snake-like 
diffusive motion, or "reptation",  must involve the 
propagation of  compression or shear wave pulses or 
kinks along the chain: in either case, the projecting 
side groups of  one chain must move over and past 
those with which they mesh in the surrounding tube, 
as shown in Fig. 9. 

Figure 9 The diffusion of compressice kinks along a polymer chain, 
leading to relative motion of chains. 
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Figure 10 Typical variation of specific volume with temperature for 
an amorphous polymer. 

The frequency of occurrence of the unit step asso- 
ciated with producing viscous strain depends, as in 
crystals, on the product of two probabilities: the 
probability Pl that a unit segment of  the polymer 
chain has enough thermal energy to jump over the 
energy barrier which separates it from an adjacent 
position; and the probability P2 that this second site is 
"vacant",  i.e. that it has sufficient unoccupied volume 
associated with it to accommodate the jumping seg- 
ment. The first probability, p~, is given by an 
Arrhenius law, as in a crystal. The second probability, 
P2, is more complicated. In crystals, unoccupied or 
"free" volume is quantized as vacancies of  fixed 
volume. Free volume exists in amorphous sytems too, 
but it is obviously not quantized in the way it is 
crystals. When the specific volume of an amorphous 
polymer is plotted against temperature (Fig. 10) there 
is a change of slope at Tg. The free volume [10, 11] is 
the difference between the total volume, V, and 
that occupied by the molecules themselves, V0. The 
occupied volume is that of a dense (though disordered) 
packing of  cylinders, one surrounding each chain, 
with a radius equal to the Van der Waals radius plus 
that associated with the local thermal vibrations of  the 
atoms. What is left over is "free" in the sense that it 
can redistribute continuously. Instead of  a thermal- 
equilibrium concentration of  vacancies, each of fixed 
volume, which move around continuously, the free 
volume exists (in thermal equilibrium, of course) as a 
spectrum of void volumes which continuously open 
up and close again. The thermal expansion data show 
that (unlike crystals) the free volume increases linearly 
with temperature. Defining the fractional free volume 
as 

V - V 0  
f~ - (9) 

V 

we have that 

L = L + ~ ( T -  rg) (10) 

where fg i s  the fractional free volume at the glass 
temperature. The quantity ~f is the free-volume expan- 
sion coefficient: it is the difference between the total 
expansion coefficient and that for the occupied volume. 
The figure shows how the value of  uf changes at Tg; 
above Tg it is large, below it is much smaller (some 
authors take it to be zero, but a small finite value may 



be more realistic). The probability, P2, is then the 
chance that, adjacent to a jumping segment, a local 
free volume of f~ or greater is available (fr is the 
fractional volume required to accommodate the jump- 
ing segment). This probability [12] is 

Then the viscosity at temperature T, relative to that 
at Tg is given by pl(T)p2(f) /(p,(Tg)P2(fg ), or 

J/(T) - e x p I Q ( 1  l g ) ] e x p [ B ~ - l v - ~ g ) l  
.(T~) 

(12) 

where B = Afc. The apparent activation energy is 
given by 

3 In tl(T ) B R T  2 

Ol /RT  - Q + - 7 - a f  

where ac = Ofv/OT. Well below Tg the free volume is 
almost independent of temperature (Fig. 10); then the 
first term is dominant and we find Arrhenius behaviour 
(though with a spectrum of activation energies). At 
and above Tg, on the other hand, fv increases rapidly 
with temperature; and it is probable that Q, corre- 
spondingly, decreases [13]. When Q is small, the 
second term becomes dominant. Experiments on 
viscous liquids support this view [14, 15] so that data 
are well described by 

q(T) _ e x p [ B Q ~ - ~ ) ]  (13) 
q(Tg) 

with the constant B close to unit. Substituting 
Equation 10 leads immediately to the WLF equation 

tl(T) - [(B/2.3fg)(r - Tg)] 
log aT = l o g - -  -- 

Yl(Tg) (L/~f "J- T -  Tg) 
(14) 

with C~ = - B/2.3fg and C2 = fg/~f. One of the many 
achievements of the work of  Ferry and his co-workers 
[6, 16] is the demonstration that C~ and C2 are universal 
constants at and above Tg. The same constants 
describe polymers also, implying that fg and ac, too, 
are universal constants. It is helpful to note their 
magnitudes: taking B = 1, the fractional free volume 
at the glass temperature, fg, is found to be 0.025; and 
the free-volume expansion coefficient above Tg, ~r, 
4.8 x 10 -4 K-1. Both values are physically plausible. 
But, as before, the simple rheological model of Fig. 4a 
leads to a modulus which decreases too steeply with 
temperature. A much better fit to the data is given by 
the distribution of Fig. 4b, introducing (as before) one 
new parameter: the standard deviation AC~/C~ in G ,  
and using it in the same way that AQ was used earlier. 

2.3. The rubbery  m o d u l u s  
Above Tg, the modulus of linear, amorphous polymers 
often show a plateau at around 1 MPa. This is close to 
the modulus of weakly cross-linked rubbers and arises, 
as far as is known, in a similar way. In the rubbery 
state, the weak intermolecular (Van der Waals) bonds 

Figure 11 Schematic illustration of a polymer network showing 
entanglement points (marked "E") which act like chemical cross- 
links. 

have largely melted. The long chain-like molecules can 
assume a variety of configurations in response to the 
thermal vibration which causes a "micro-Brownian" 
motion of the units of the chain. The most probable 
configurations are those which maximize the entropy 
of the system. But there is a constraint; the molecular 
chains curl and twist around each other; in places they 
form mechanical entanglements which behave very 
like chemical cross-links (Fig. 11). When strained, the 
chains tend to order (by lining up) and the entropy 
decreases; but the entanglements give the structure a 
memory, and on unloading it resumes its original 
shape and the entropy increases again. The rubbery 
modulus is related to this change in entropy by an 
equation which is the analog, for entropy-induced 
elasticity, of Equation 2 

E = T d2S(~) 
de 2 (15) 

where S(e) is the entropy per unit volume as a function 
of tensile strain e. 

Standard texts [7, 9, 17] summarize the calculation 
of the rubbery modulus from this entropy-dominated 
model. For small strains the result is 

E = 3~(T)RT 
~r e (16) 

where Q(T) is the density of the rubbery polymer, R is 
the gas constant, T the temperature and Me is the 
average molecular weight between cross-links or 
(here) entanglement points. 

The statistical mechanics of entanglements in linear 
polymers is, at present, beyond the scope of rubber 
theorists; _/Qe cannot be calculated and is derived instead 
from data for E by using Equation 16; values are listed 
in Table I. This means that the entropy model of 
rubber elasticity has not, strictly speaking, been veri- 
fied for linear polymers, although it is difficult to 
visualize another cause for the rubbery behaviour; and 
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the values of Mc derived from the equation are physi- 
cally sensible. 

At first sight, Equation 16 suggests that the modulus 
in the rubbery regime should increase with increasing 
temperature, and for many cross-linked rubbers, it 
does. But the density decreases with increasing tem- 
perature. If the density at some reference temperature 
(say, Tg) is Q(Tg) and the volumetric coefficient of 
thermal expansion is ~v, then the density at some 
higher temperature T is 

Lo(T) = ~O(Tg) (17) 
1 + a v ( T -  Tg) 

This change in density (which is included in our 
calculations) cancels, to some extent, the explicit tem- 
perature dependence of Equation 16. Further, it is 
likely that the weaker entanglements unravel as the 
temperature is increased so that h4 e, too, increases 
with temperature. The combined influence of this and 
of thermal expansion leads to the plateau (usually 
with a slight negative slope) seen in experiments. 

2.4. Rubbery and Newtonian viscous f low 
At high temperature (T > 1.2Tg) the Van der Waals 
bonds melt completely and even the entanglement 
points slip. This is the regime in which thermoplastics 
are moulded; the polymer behaves like a viscous liquid. 
For a given polymer system (such as PMMA) the 
viscosity, q, depends on the molecular weight, h~ w and 
the temperature T. 

Two regimes of flow have been identified. Immedi- 
ately after the rubber plateau, the polymer flows in a 
way which has the same time-temperature equival- 
ence as that of the visco-elastic regime (Equation 8) 
implying that it is controlled by free volume. This is 
generally called "rubbery flow". Then the viscosity is 
given by 

[ r/ = r/0 exp C2 + T -  To_] (18) 

(where T O is the temperature at which r/ = r/0 ). 
At higher temperaturs and low shear rates, flow 

follows an Arrhenius law with a narrow spectrum of 
activation energies, so that, to a good approximation 

r/ = r /0exP(R~ ) (19) 

The modulus is then calculated from the equations 
given in the Appendix. 

The value of r/0 depends on the molecular weight, 
~rw, in one of two ways. Below a critical molecular 
weight, Mc~, the viscosity is proportional to molecular 
weight so that 

(20) r/ = r/" M .  

where r/. is the viscosity of a melt with molecular 
weight M . .  But above Mcr, the dependence changes 
such that 

Mw " 
r/ = r/c , (21) 

Commercial polymeric systems are in this second 
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regime; and in the range of temperature covered by the 
diagrams shown in the next section, rubbery flow 
dominates. 

The understanding of this behaviour is still incom- 
plete. Progress in physical modelling has been made 
by Doi and Edwards [18-21] who extended the work 
of Rouse [22] and of De Gennes [23] to describe the 
process of polymer-chain reptation. The polymer 
chains behave like tangled, flexible strings, each 
enclosed in a tube made up of the surrounding mass of 
polymer (Fig. 8). Extension or shear of the polymer 
requires the diffusive motion of the string in its tube. 
In the Rouse [22] approach, the Brownian motion is 
resisted by a Stokes friction; equivalently, compressive 
or tensile kinks form on the chain and diffuse along its 
length (Fig. 9): the passage of one kink along the 
entire chain displaces it by the kink-strength, b. If  the 
chains are short and straight, as in Fig. 9, the time 
required for a kink to diffuse along a chain is simply 
proportional to the molecular weight. But if the chains 
are long and tangled, the (stress-biased) random walk, 
or reptation of a chain in its tube is more complicated. 
Doi and co-workers [18-20, 24] show that the viscosity 
should then vary as A~rw3, in fair agreement with the 
observations described by Equation 21. 

Data for the quantities Vo, fflw, M ,  are listed in 
Table I. 

2.5. Decomposition 
If the polymer gets too hot, the thermal energy exceeds 
the cohesive energy of some part of the molecular 
chain causing depolymerization or degradation. Some 
(like PMMA) decompose into monomer units; others 
(PE, for instance) randomly degrade into many prod- 
ucts. It is commercially important that no decompo- 
sition takes place during high temperature moulding, 
so a maximum safe working temperature is specified 
for each polymer; typically, it is about 1.5Tg (Table I). 
We have truncated the deformation diagrams at this 
temperature. 

3. Data for P M M A  and PS 
In the last section, we discussed constitutive equations 
for each of the four main deformation regimes, we 
now fit data to these equations, extracting values for 
the parameters (like E0, %,  Qm, AQ, Tg, etc.) which 
best describe them. The final choice of parameters has 
already been presented in Table I. But the method 
used to obtain them is an important part of the 
process for constructing the maps shown later. The 
data are drawn from many sources, referenced in the 
text and on the figures and tables. 

3.1. Thermal and structural data 
Glass temperatures, measured calorimetrically and by 
dilatometry, are listed in Table II. We have selected 

TABLE II Glass transition temperatures (high M,) 

Material Glass temperature, Tg (K) 

PMMA 378 [25], 378 [261, 377 [27], 377 [28], 
388 [29], 378 [39], 378 [31] 

PS 373 [32], 373 [33], 389 [34], 373 [31] 



TA B L E 111 Young's modulus and temperature dependence* 

Polymer Modulus,E 0 ~m 
(GPa) 

PMMA 8.57? 0.28? 
I0.51' 
7.70w 

PS 6.21�82 0.28�82 
5.80~ 
6.25w 

*E 0 is Young's modulus extrapolated to 0 K; a m is the normalized 
temperature dependence (Equation 3). 
t Sinnot [35] extrapolated from 4 K and calculated from G assuming 
v = 0.33. 

Yannas and Luise [3] numerical average from other sources [37] 
and [36] are included in the PS average. 
w Bondi [37]. 
�82 Sinnott [36] extrapolated from 4 K and calculated from G assum- 
ing v = 0.33. 

the values shown in Table I as the most reliable. The 
thermal expansion coefficients (Table I) are from 
Yannas and Luise [3], Williams et al. [6] and Van 
Krevelen [30]. The molecular weights given in Table I 
are typical values for commercial PMMA and PS, 
though, in practice, they vary widely depending on the 
supplier and the grade. 

3.2. The glassy modulus and the secondary 
relaxations 

The modulus at absolute zero, E0, and its temperature 
dependence, era, were obtained by back-extrapolation 
of the data of Sinnott [35, 36]. The values obtained in 
this way for PMMA are close to the average for all the 
available data; and those for PS are supported by data 
from Bondi [37], (Table III). 

The mean activation energy Qm for each of the 
secondary relaxations is found by plotting the log of 
the time t (or frequency v) for the centre of the modu- 
lus drop (or the damping peak associated with the 
transition) against 1/T. It is found (e.g. [38]) that the 
data follow a simple Arrhenius law so that the plot 
gives a straight line with slope - Qm/2.3R. For PMMA 
(Fig. 12a) the p-relaxation has a mean activation of 
121 kJ mo1-1 in agreement with the measurements of 
Iwayanagi and Hideshima [39, 40] and of Sato et al. 
[41]. The activation energy for the fl-relaxation is 

13kJmol J. For PS (Fig. 12b) the fl-relaxation has a 
mean activation energy of 132kJmol i. Only two 
data points ([36, 42]) are available for the g-relaxation 
in PS so Qm was calculated from these directly. 

When the relaxations are well separated (as they are 
for PS) the drop in modulus AE associated with each 
can be measured directly. When this is not so (as for 
PMMA), AE for each transition was adjusted to give 
the best fit for the overall drop in modulus. Finally the 
spread of activation energies, AQ/Qm, was chosen by 
trial and error to match the breadth of the transition. 
The parameters which fit various groups of data are 
listed in Table IV and abstracted in Table I. The 
predictions of the rheological model, using these par- 
ameters, are compared with raw data in Figs 13a-c. 
In practice, the g-transition in PMMA and the 7- 
transition in PS have a very small effect on the moduli 
(AE < 0.1 GPa) and they are ignored in constructing 
the diagrams. 

3.3. The glass-rubber transition and the 
rubbery modulus 

The glass-rubber or c~-transition, too, is modelled by 
the rheological model shown in Fig. 4b. The modulus 
drop AE is the difference between the glassy modulus, 
reduced by the modulus drops associated with the 
secondary transitions and with thermal expansion 
(Equation 3), and the rubbery modulus. The mean 
value of C1 and its standard deviation were chosen as 
described earlier. For PMMA, a standard deviation of 
0.055 gives a good fit to data (Fig. 14a); for PS, the 
value 0.08 gives a good fit (Fig. 14b). 

The rubbery modulus is related to the molecular 
weight between entanglements _~r by Equation 15. 
The most recent measurements for commercial poly- 
mers are those of Seitz [55] and it is his data that we 
have used to select _/14~ for PS. But for PMMA a range 
of values for the rubbery modulus and density have 
been reported. Results derived from these are listed in 
Table V; the value we have selected for 3~r is about 
half the value given by Seitz. The density ~(Tg) at the 
glass temperature was calculated by extrapolating 
data for Q from the measurement temperature to Tg. 

Fig. 15 shows the experimental shift factors, log aT, 
for PMMA and PS. Above Tg they are well fitted by 
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Figure 12 Arrhenius plots of the frequency of  damping peak: (a) the fl and 7 peaks in PMMA; (b) the fl peak in PS (after McCrum et al. [38]). 
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T A  B LE IV Secondary transition data* 

Polymer Transition Qm T* (K) AE AQ 
(kJ mol i ) (GPA) (kJ mol-  i ) 

P M M A  ~ 75.4 [431 283 [51] 3.55 ~; 24J; 
121.5 [39, 60] 
75.4 [44] 

125.7 [411 
71.2 [45] 

P M M A  7 13.0 [46] 100 [71] 1.66 ~; 2.57w 
P M M A  6 < 20.9 [47] < 4.2 [35] < 0.1 [35] 

< 0.1 [42, 53] 
PS 3 125.7 [48] 300 [52] 0.2~ 55w 

138.3 [49] 
PS 7 33.5 [50] 132 [50] < 0.07 [34] 

0.075 [50] 
PS 6 9.4t 36t 1.79 [53] 5w 

0.9 [36] 
> 1.0 [37] 
> 0.5 [54] 

* Qm is the mean activation energy, T* the temperature characterizing the damping peak at a frequency of 1 Hz, AE the modulus drop 
associated with the transition and AQ the spread in Q required to fit the experimental data. 
t Calculated from [53] and [36]. 

Best fit to data this study. 
w Estimated value using the method described in the text. 

the WLF equation (Equation 8) with values of C~ and 
C2 which are consistent with values offg and af listed 
in Table VI. The figures show that at Tg there is a 
discontinuity in slope of the shift factor. The expansion 
data given in Table VI suggest that af is smaller below 
Tg, but that it is not zero. We have therefore used the 
WLF equation below Tg, with a new value of  C2, 
calculated from the data in Table VI. The final choice 
of C~ and 6'2 are listed in Table I. The viscosity in the 
viscoelastic transition has been calculated as described 

in Section 2, using these parameters in the WLF 
equation. 

3.4. Rubber (glass) - viscous transition and 
decomposition 

Data for viscous flow are summarized in Table VII. 
The modulus is calculated by using Equations 17 and 
18 with the data listed in Table I, including a spread 
of  the constant C~. Decomposition data are sum- 
marized in Table VIII. 
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Figure 13 Comparison of data 
from various sources with the 
model: (a) P M M A  at 1Hz 
through Tg, (b) PS at 1Hz 
through Tg, (c) PS at 1 Hz at low 
temperature. The data are taken 
from references [34, 37, 50, 51, 
59]. 
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4 Figure 13 continued. 

.,1 

~3 
0 

0 
"~ 2 

1 

(b) 0.4 

Mode 

0.6 0.8 1 
NORMALIZED TEMPERATURE (T/Tg) 

1.2 

._  

c ~  

3.5 
0 

L3 
O 
.3 

(c) 
3 

0 

~ Model X 

i i i i . . . .  

0.3 0.6 
NORMALIZED TEMPERATURE (T/Tg) 

3203 



3 
A 

C~ a~ 

2 

0 

0 
0 

.1 ~- 
(e) -2 

0 

/ 
Model 

4 6 8 

LOG (TIME) (sec) 

10 12 14 

Figure 14 Comparison of stress 
relaxation data and the predic- 
tions of the combined models (a) 
for PMMA at 373 K, Fujino et al. 
[65], and (b) for PS at 408 K (L) 
Fujita and Ninomiya [72]. 

4j 

2 

0 
O 

O "l. 
O 

-2 

-3 

(b) -8 

Model 

-6 -4 -2 0 

LOG (TIME) (see) 

3204 



O 
< 
[.. 

v 

O 
,-d 

15 
\ 
\ 

WLF odaption 

WLF equation 

Figure 15 The WLF shift factors 
calculated using the method of the 
text, compared with experiments 
(a) for PMMA, and (b) for PS. (b) 
( ~ )  Fujita and Ninomiya [72]. 

-5 
(u) 350 400 

TEMPERATURE (K) 
450 

15 

o 

< 
k[. 

r, 5 

O 
--1 

-5 
lb) 350 

\ 

1 ~  WLF equation 
WLF adaption ~ /  

400 
TEMPERATURE (K) 

450 

3205 



T A B  L E V Molecular entanglement weight, density and expansion coefficients* 

Polymer /~r 0 ~g ~v Lo(Tg) 
(kgmol i) (103kgm-3) ( K - l )  (K t) (103kgm-3) 

PMMA 9.15 [56] 1.188 [28] 2.7 x 10 -4 [30] 6.2 x 10 4 [30] 1.16"* 
10.0 [56] 1.195? 6.6 • I0 -4 [30] 

1.188~ 
1.150w 
1.216�82 
1.19 [61] 

PS 19.1 [55] 1.04~1.065 [62] 1.8 [301 4.5 [30] 1.03"* 
18.1 [57] 1.05�82 2.8 [30] 7.1 [30] 

1.057t 
1.052-1.065 [63] 

* M  r is the molecular weight between entanglements, calculated from Equation 16, Q is the density at the temperature listed in the reference, 
c~ is the bulk expansion coefficient below Tg and ev is that above Tg; Q(Tg) is the mean density extrapolated to Tg. 
? Kolb and Izard [58] at 273 K. 

Gall and McCrum [59] at 298 K. 
w Rogers and Mandelkern [26] at Tg. 
�82 Fujino et al. [60] at 298 K. 
**Calculated from data presented. 

4. Modulus-mechanism diagrams 
4.1. Construction and features of the 

diagrams 
The previous sections have described the mechanisms 
which determine the modulus of linear amorphous 
polymers between absolute zero and the decomposition 
temperature. We now ask: over what range of time 
and temperature is a given mechanism dominant? And 
when do the changes of mechanism appear? For each 
mechanism, the constitutive equation takes the form 

E = f ( t  or v, T, material properties) (22) 

where t is the loading time (or v is the frequency) 
and Tis the absolute temperature. The dominant mech- 
anism, for a given T and t, is the one which leads to the 
lowest value of E; and mechanism changes take place 
where two mechanisms lead to the same modulus*. 

Figs 16 to 19 show deformation mechanism diagrams 
for PMMA and PS, constructed from the constitutive 
equations of Section 2, using the parameters of 
Table I, always selecting the one that leads to the 
lowest modulus. Details are given in the Appendix. 
Figs 16 and 17 show the dynamic modulus of PMMA 
over the full ranges of temperature and frequency that 
can be realized in practice. In Fig. 16 the axes are E 
and T; the contours are lines of constant fequency. 
The four regions are roughly distinguished by the range 
of modulus which characterizes them, as suggested by 

T A B L E V I Free volume data* 

Tobolsky [68], though strictly it is a field of values of 
E, T and v, not merely of E, which characterizes a 
mechanism. In Fig. 17 the axes are E and v (plotted 
inversely to make the diagram comparable with 
diagrams which have time as abscissa: see Gilbert 
[64]). Here too, the four mechanism-regimes are dis- 
tinguished by a range of values of E. Figs 18 and 19 
show similar diagrams for PS. 

4.2. Influence of polymer chemistry and 
molecular weight 

It seems probable that these diagrams for PMMA and 
PS are broadly typical of those for linear amorphous 
polymers. By normalizing the temperature scale by Tg, 
the lowest-order effects of differing polymer chemistry 
are removed. 

At any more detailed level, of course, there are 
effects of polymer chemistry and molecular weight. 
The a, /~, 7 and 5 transitions are determined by the 
nature of the side-groups, since these influence the 
packing of molecules in the amorphous state. (The 
experiments of Fujino et  al. [65] on co-polymers of 
PMA and PMMA, for example, show that the larger 
the side-groups, the more difficult it is to pack the 
chains, and the broader is the glass-rubber transition.) 
The extent of the rubbery regime, too, depends on the 
molecular weight of the polymer. Reducing the mol- 
ecular weight shifts the contours in the viscous flow 

Material av at Tg .g at Tg % at Tg a d T  < Tg) af(T > Tg) 
( K - ' )  ( K - ' )  (K 1) 

P M M A  6.25 • 10 -4]" 2.69 • 10 4 J; 9.4 x 10 5w 1.75 x 10 4w 5.3l x 10 -4�82 
PS 6.12 x I0 -4~ 2.27 x 10 -4:~ 5.8 x 10 .5w 1.69 x 10 .4w 5.4 x 10 -4�82 

*c~ v and C~g are the bulk expansion coefficient above and below Tg, % is the expansion coefficient for the occupied volume (Fig. 9), af is the 
difference. C l and C 2 in Table I are calculated from these data using C 1 = B/2.303fg and C2 = fg/df, with B = 1 (Williams et al. [63]) and 
f~ = 0.025 (Doolittle [14, 15]). 
?Van Kreveleu ([30], Table 4.10). 

Average values in [30]. 
w Calculated by Gilbert [64]. 
�82 Williams et al. [6]. 

* The response of  the rheological model for the relaxations is evaluated numerically, summing the Gaussian distribution of  activation energies 

over 3AQ on either side of  Q. 
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T A B L E  VI I  Viscous flow* 

Polymer v0 (N sec m -  2) 

PMMA 2 x 10 21, 
PS 1.4 x 10 5;t 

*v 0 is the pre-exponential viscosity in Equation 18. 
+ Chosen to fit the data of  Fujino et al. [65]. 

Chosen to fit the data of  Fujita and Nimoniya [72]. 

regimes to the left, and reduces the extent of the 
rubbery plateau or removes it altogether. McLoughlin 
and Tobolsky [69], for instance, find that PMMA with 
a molecular weight of 36kgmol ~ shows a pro- 
nounced rubbery plateau, while that with a molecular 
weight of 0.15 kg mol- 1 shows none. Other studies of 
the extent of the rubbery regime can be understood in 
these terms (Vinogradov et al. [70]). And the viscosity 
of the melt regime, too, depends on molecular weight 
(Van Krevelen, [30]), though the differences scale, 
broadly, as Tg. 

We expect, therefore that linear amorphous will be 
described by diagrams like those of Figs 16 to 19, with 
small differences caused by molecular weight and 
architecture. 

5. Summary and conclusions 
Maps can be constructed which summarize the time 
and temperature dependent modulus of amorphous 
polymers, E(t, T), for a wide range of temperatures 
and times, under various loading conditions. Several 
separate mechanisms are involved: bond stretching, 
constrained molecular movement and larger scale 
molecular sliding, rubbery behaviour constrained by 
entanglements and true viscous flow. Each mechanism 
can be modelled (though with differing levels of physi- 
cal realism) to give constitutive equations' which 
describe how the modulus E(t, T) depends on tem- 
perature, time or frequency of loading, and on material 

T A B L E V I ] I Depolymerization temperatures 

Polymer T~ Te/T a 

PMMA 543* 1.44 
PS 5431' 1.46 

* Dosser [66]. 
1-Shell Plastics [67]. 

parameters which characterize the chemistry and mol- 
ecular architecture of the polymer. We have assembled 
material parameters for PMMA and for PS and used 
them, with the constitutive equations, to construct the 
maps shown as Figs 16 to 19. 

It is probable that the maps shown here are broadly 
typical of linear amorphous polymers (though maps 
for others can readily be constructed using the same 
method). The same approach can be adapted to 
describe amorphous thermosets and rubbers, and, 
with further changes, to commercially significant 
semicrystalline polymers such as nylon and PE. 

The maps shown here describe small-strain behav- 
iour. The next step, we believe, is to develop a parallel 
approach for large strain deformation which is 
capable of including cold drawing, shear banding, 
twinning and crazing. 

Appendix: computation of the 
deformation diagrams 

The modulus E is calculated as a function of tempera- 
ture T and loading frequency v ("dynamic loading") 
or time ("stress relaxation"). At the highest tempera- 
tures, E is determined by viscous flow. The modulus, 
which we will term Eve is then determined by a 
dashpot describing the faster of the two flow mechan- 
isms (Equations 18 and 19) in series with a spring 
describing the rubber-modulus ER. Further decrease 
in temperature introduces the glass-rubber transition. 
Let the increase in modulus associated with this 
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Figure 16 A deformation diagram for PMMA 
under dynamic loading conditions, with E and 
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transition be AE~ (defined below). Further drop in 
temperature freezes out the #, 7 and & relaxations; let 
the increase in modulus caused by these be AE~, AE 7 
and AE6. Then the modulus, at temperature T and 
frequency v is 

EC T, v) = EvR + AE~ + AE~ + AEr + AE+ 

CA1) 
To proceed further, we require expressions for the 

individual AE terms. Conside the fl relaxation as an 
example. It is described by the array of n Maxwell 

elements shown in Fig. 4b. For a single element 

4 a 
= -- + - CA2) E q 

Then for the parallel array of Fig. 4b, the following 
constitutive equations hold. If the modulus associated 
with the ith element is 6E i and its viscosity is &~/i 
(Fig. 4), then for constant strain 

AE# = ~ &Eiexp ( 6Eit'~ ,=, - -~-/ CA3) 
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for constant strain rate 

,=,--}-- 1 - exp - 6q, JJ 

and for dynamic loading (so that e = e 0 sin vt) 

i = l  1 -F \Vfrh]_ I 
where 

5E i = AE~f(Q)SQ (A6) 

5 q i =  5o#exp(--~T)f(Q)5 Q. (17) 

and AE~ is the total modulus change associated with 
the/3 transition. Similar expressions are used for the 5 
and 7 transitions; the e or glass transition only differs 
in the expression used for ~: it is (from Equation 14) 

rg) f ' " ' 5 "  5qi = r/0 ~ exp ~ - ~  iF--- ~gJt~g) ~Z (18) 

The rubbery flow regime is treated in a similar way. 
An important quantity in each summation is the 

standard deviation of  the activation energy. It deter- 
mines, through Equation 5, the breadth of  each 
transition. The standard deviations of Q (for the/?, 7 
and 5 transitions) and of  Cl (for the ~ and rubbery 
flow regimes) are listed in Table I as the "fractional 
spread" in each quantity: AQ/Qm and ACj/C,.  Values 
of AE were determined at each temperature and fre- 
quency by evaluating Equation A3, A4 or A5, sum- 
ming the Gaussian distribution over 3AQ (or 31 G )  
on either side of Q or Cl. 
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